A Novel Pair of Replacement Algorithms on L 1 and L 2 Cache for FFT

نویسنده

  • Richa Gupta
چکیده

_ Processors speed is much faster than memory; to bridge this gap cache memory is used. This paper proposes a preeminent pair of replacement algorithms for Level 1 cache (L1) and Level 2 cache (L2) respectively for the Fast Fourier Transform (FFT). The access patterns of L1 and L2 are different, when CPU does not get the desired data in L1 then it refers to L2. Thus the replacement algorithm which works efficiently for L1 may not be efficient for L2. With the memory access pattern of FFT, the paper has simulated and analyzed the behavior of various existing replacement algorithms on L1 and L2 respectively. The replacement algorithms which are taken into consideration are: Least Recently Used (LRU), Least Frequently Used (LFU) and First In First Out (FIFO). This paper has also proposed new replacement algorithms for L1 (FFTNEW1) and for L2 (FFTNEW2) respectively for the same application. Simulation results shows that by applying the proposed pair of replacement algorithms miss rates are considerably reduced.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An algorithmic theory of caches

The ideal-cache model, an extension of the RAM model, evaluates the referential locality exhibited by algorithms. The ideal-cache model is characterized by two parameters-the cache size Z, and line length L. As suggested by its name, the ideal-cache model practices automatic, optimal, omniscient replacement algorithm. The performance of an algorithm on the ideal-cache model consists of two meas...

متن کامل

Proficient Pair of Replacement Algorithms on L1 and L2 Cache for Merge Sort

Memory hierarchy is used to compete the processors speed. Cache memory is the fast memory which is used to conduit the speed difference of memory and processor. The access patterns of Level 1 cache (L1) and Level 2 cache (L2) are different, when CPU not gets the desired data in L1 then it accesses L2. Thus the replacement algorithm which works efficiently on L1 may not be as efficient on L2. Si...

متن کامل

Reduction in Cache Memory Power Consumption based on Replacement Quantity

Today power consumption is considered to be one of the important issues. Therefore, its reduction plays a considerable role in developing systems. Previous studies have shown that approximately 50% of total power consumption is used in cache memories. There is a direct relationship between power consumption and replacement quantity made in cache. The less the number of replacements is, the less...

متن کامل

Reduction in Cache Memory Power Consumption based on Replacement Quantity

Today power consumption is considered to be one of the important issues. Therefore, its reduction plays a considerable role in developing systems. Previous studies have shown that approximately 50% of total power consumption is used in cache memories. There is a direct relationship between power consumption and replacement quantity made in cache. The less the number of replacements is, the less...

متن کامل

Cache-oblivious Algorithms Cache-oblivious Algorithms Acknowledgments

This thesis presents “cache-oblivious” algorithms that use asymptotically optimal amounts of work, and move data asymptotically optimally among multiple levels of cache. An algorithm is cache oblivious if no program variables dependent on hardware configuration parameters, such as cache size and cache-line length need to be tuned to minimize the number of cache misses. We show that the ordinary...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010